Overview of Geosynthetic Materials, Their Characteristics, Applications, and Design Considerations

> Jie Han, Professor, Ph.D., PE The University of Kansas

Outline of Presentation

- Introduction
- Geosynthetic Products
- Primary Functions
- Material Characteristics
- Applications
- Design Considerations

Geosynthetics

- Geo: Earth soil or rock
- Synthetics:

Man-made products, mainly polymers

Textural Soil Classification

Soil Name	Particle Size (in.)	U.S. Sieve No.
Boulders	> 12	
Cobbles	12 - 3	
Gravel		
Coarse	3 – 3/4	3 - 3/4 in.
Fine	3/4 – 0.19	3/4 in. to <mark>No. 4</mark>
Sand		
Coarse	0.19 – 0.079	No. 4 to No. 10
Medium	0.079 - 0.017	No. 10 to No. 40
Fine	0.017 - 0.003	No. 40 to No. 200
Clays and silts	< 0.003	

State of Soil

Particle Sizes

Particle Size (in.) – log Scale

Percent of Passing (Finer)

Soil Gradation

Surface Erosion Potential and Plant Growth Capability

USDA Soil Texture*	USCS group symbol	USCS Soil Description	Surface Erosion Potential (rill/interrill/wind)	Support of Vegetation Establishment	
Gravel	GW	Well-graded gravel	Low to medium	Poor	
Gravel	GP	Poorly-graded gravel	Low	Very poor	
Gravel/silt	GM	Silty gravel	Low to medium	Poor to fair	
Gravel/clay	GC	Clayey gravel	Low	Poor to fair	
Sand	SW	Well-graded sand	Medium to high	Poor to fair	
Sand	SP	Poorly-graded sand	Medium to high Wind erosion-high	Very poor	
Loamy sand	SM	Silty sand	Medium to high	Good to very good	
Sandy clay loam	SC	Clayey sand	Medium to high	Good to very good	
Silt	ML	Silt	High Wind erosion- Good to very go high to very high		
Clay	CL	Clay	Low to medium	Fair to good	
Silt	MH	Silt, high plasticity	Medium	Good	
Clay	СН	Clay, high plasticity	Low to medium	Fair to good	
	PT, OL/ OH	Peat/Organic silts/clays	Low to high	Very good	

* The USDA soil texture system does not correlate well with some aspects of the USCS, especially for gravelly and organic soils.
Rivas (2006)

Soil Permeability

Basics of Physics

Frictional coefficient

Factor of Safety

$$f = \frac{F}{W} = tan\phi$$

 $FoS = \frac{F}{T} = \frac{tan\phi}{tan\alpha}$

 ϕ = frictional angle

Soil Strength

Shear strength

$$\tau_f = c + \frac{W}{A} tan\phi$$

c = cohesion $\phi = frictional angle$

Short term

c = 0 for uncemented sand (air dry or saturated)

c > 0 for clay
(air dry or saturated)

Long term

c = 0 for uncemented sand

c = 0 for clay (saturated)

Apparent Cohesion

Shear strength

$$\tau_f = c_a + \frac{W}{A} tan\phi$$

 c_a = apparent cohesion ϕ = frictional angle

Apparent cohesion

• Exist when soil is unsaturated due to capillary action (i.e., suction), but disappear when soil is saturated or dry

• Rooted soil has apparent cohesion

Long-term Stability of Natural Slope

 $FS = \frac{\tan \phi}{\tan \alpha} \ge 1.0$

 $FS \approx 0.5 \frac{\tan \phi}{\tan \alpha} \ge 1.0$

For typical soil, $\phi = 30^{\circ}$

2(H):1(V) slope (27°) **Stable** 4(H):1(V) slope (14°)

Products of Geosynthetics

Geosynthetic Products

- Geotextile (GT)
- Geogrid (GG)
- Geonet (GN)
- Geomembrane (GM)
- Geosynthetic Clay Liner (GCL)
- Geocell/geoweb (GW)
- Geocomposite (GC)
- Geotube (GTB)
- Erosion mat (EM)
- Others

Types of Geosynthetics Used

Type of Polymer

- Polypropylene (PP)
- Polyester (PET)
- Polyethylene (PE)
- Polyamide (nylon)
- Others

- Nonwoven Geotextiles: bonded or needle-punched
- Woven Geotextiles

- Consist of apertures with ribs
- UX, BX, or TX geogrid
- Punched and drawn, coated woven or wielded

- Grid-like materials, made of polyethylene (PE)
- Have thickness difference in ribs
- Used for in-plane drainage

Geomembranes

- PE dominates, sometimes PP or PVC
- Manufactured by extrusion
- Smooth or rough (textured) surfaces
- Impermeable materials, mainly used as barriers

Geosynthetic Clay Liners

Bentonite clay bonded between two geotextiles
 Used as replacement for compacted clay liners or geomembranes

Geocomposites

- Combine two or more geosynthetic products to one product
- Geotextile-geonet composites
- Geotextile-geogrid composites

Geocell or Geoweb

- An expandable three-dimensional honeycomb-like structure
- Used for soil confinement

Sediment-filled sleeves of geotextile with an oval cross section

 Mainly used for erosion protection along shores and waterfronts

Erosion Blanket or Mats

 Protect ground surfaces (especially slopes) from loss of soil due to water

 Temporary erosion mats are used for flatter slopes (<45°) and degraded after development of vegetation (i.e., Erosion-control blanket)

Permanent erosion mats are used for steep slopes
 (>45°) (i.e., Turf Reinforcement Mat)

Functions of Geosynthetics

Primary Functions of Geosynthetics

- Separation
- Filtration
- Drainage
- Reinforcement
- Containment (barrier)
- Erosion protection

Separation Function

- Keep the integrity and functioning of two dissimilar materials intact
- Prevent stone aggregate intruding into fine soil
- Prevent soil fines pumping into aggregate

Courtesy of Christopher

Filtration Function

- Allow for adequate liquid flow
- Limit soil loss across the interface plane

Drainage Function

Large porosity or open space to allow water quickly flow through

Reinforcement Function

- Provide (tensile) strength necessary for soil
- Increase shear (interlocking) resistance
- Increase stiffness & minimize deformation (confinement)

Containment Function

 Low permeable materials minimize liquid flow

Erosion Protection Function

- Avoid water drops directly hitting on soil surface
- Reduce rate of water flow
- Contain and retain soil particles

Summary of Primary Functions of Geosynthetics

Туре	SP	RF	FT	DN	СТ	EP
NWV GT	\checkmark	X	\checkmark	\checkmark	X	\checkmark
WV GT	\checkmark	\checkmark	\checkmark	X	X	\checkmark
GG	X	\checkmark	X	X	X	X
GN	X	X	X	\checkmark	X	X
GM	\checkmark	X	X	X	\checkmark	\checkmark
GCL	\checkmark	X	X	X	\checkmark	\checkmark
GW	X	\checkmark	X	X	\checkmark	\checkmark
GP	Х	Χ	X	\checkmark	X	X
GC	D	D	D	D	D	D
GTB	\checkmark	X	\checkmark	\checkmark	X	\checkmark

SP=Separation RF=Reinf. FT=Filtration DN=Drainage CT=Containment EP=Erosion

Protection
Properties of Geosynthetics

Properties of Geosynthetics

Physical properties

- Mainly for quality control and assurance

Hydraulic properties

- Important for separation, filtration, drainage, and containment applications

Mechanical properties

- Important for reinforcement applications and constructability

Durability properties

- Important for long-term performance

Physical Properties

- Polymer (PE, PP, PET, etc.)
- Mass per unit area (oz/yd² or g/m²)
- •Thickness (mil = 1/1000 inch, mm)
- Roll length
- Roll width
- Roll diameter
- Specific gravity and density
- Surface characteristics

Hydraulic Properties

- Opening characteristic (geotextile)
 - Apparent Opening Size (AOS)
 - Percent Open Area (POA)
 - Porosity (n)
- Permeability and permittivity
- In-plane flow capacity (transmissivity)

Apparent Opening Size (AOS)

Test procedures

- Place geotextile sample into the sieve frame
- Start with the smallest diameter beads
- Place 50g of one size glass beads on the center of geotextile
- Shake the sieve for 10 min.
- Weigh the glass beads that pass through the specimen

- Repeat the test using larger bead size fractions until the weight of beads passing through the specimen to be 5% or less

AOS or O_{95} = the size of the beads of which 5% or less pass

Test for AOS

Transmissivity

Allowable Flow Rate of Geosynthetic Filter or Drainage

 $q_a = q_{ult} \frac{1}{RF_{SCB} x RF_{CR} x RF_{IN} x RF_{CC} x RF_{BC}} = q_{ult} \frac{1}{RF}$

- q_a = allowable flow rate
- T_{ult} = ultimate flow rate
- **RF = overall reduction factor**

 $RF_{SCB} = RF$ for soil clogging and blinding (2 – 10) $RF_{CR} = RF$ for creep reduction of void space (1 – 2) $RF_{IN} = RF$ for adjacent materials intruding into void space of geosynthetics (1 – 1.2) $RF_{CC} = RF$ for chemical clogging (1 – 1.5) $RF_{BC} = RF$ for biological clogging (1 – 4)

Geotextile Clogging and Blinding

Bell and Hicks (1980)

Richardson

Mechanical Properties

- Tensile strength
 - Grab strength (geotextile or geomembrane)
 - Single rib strength (geogrid)
 - Narrow strip strength (geomembrane)
 - Wide-width strength (geotextile or geogrid)
- Junction strength (geogrid)
- Creep resistance
- Seam strength (geotextile or geomembrane)
- Tear strength (geotextile or geomembrane)
- Burst strength (geotextile or geomembrane)
- Puncture strength (geotextile or geomembrane)
- Penetration Resistance

Tensile Strength Test

Creep Test

Courtesy of Leshchinsky

Yuan

Creep Reduction Factors

Polymer Type	Creep reduction factor, RF _{CR}
Polyester (PET)	1.6 to 2.5
Polypropylene (PP)	4.0 to 5.0
High Density Polyethylene (HDPE)	e 2.6 to 5.0

(FHWA NHI-00-043)

Resistance Tests

Durability Properties

- Abrasion resistance
- UV resistance
- Chemical resistance
- Biological resistance
- Temperature stability

Sunlight (UV) Degradation

Laboratory exposure test

- Xenon-arc exposure test (ASTM D4355)
- Ultraviolet Fluorescent light test (ASTM G53 and D5208)

Resistance of Polymers to Specific Environment

Soil Environment	Polymer		
	PET	PE	PP
Acid Sulphate Soils	NE	?	?
Organic Soils	NE	NE	NE
Saline Soils pH < 9	NE	NE	NE
Calcareous Soils	?	NE	NE
Modified Soils/Lime, Cement	?	NE	NE
Sodic Soils, pH > 9	?	NE	NE
Soils with Transition Metals	NE	?	?

NE = No Effect ? = Questionable, exposure test required

(FHWA NHI-00-043)

Allowable Tensile Strength of Geosynthetic

$$T_{a} = T_{ult} \frac{1}{RF_{ID} \times RF_{CR} \times RF_{CD} \times RF_{BD}} = T_{ult} \frac{1}{RF}$$

 $\begin{array}{l} T_a = \text{allowable tensile strength} \\ T_{ult} = \text{ultimate tensile strength in lab} \\ RF_{ID} = \text{reduction factor for installation damage} \\ RF_{CR} = \text{reduction factor for creep} \\ RF_{CD} = \text{reduction factor for chemical degradation} \\ RF_{BD} = \text{reduction factor for biological degradation} \\ RF = \text{overall reduction factor} \end{array}$

Installation Damage Test

Step 1:Place geosynthetic and backfill

Step 2:Compaction

Step 3: Exhume geosynthetic sample

Step 4: Test for tensile strength

Step 5: Determine reduction factor

RF= T_{control} /T_{damaged}

Courtesy of Leshchinsky

Installation Damage Reduction Factors

	Reduction Factor, RF _{ID}		
Geosynthetic	Type 1 Backfill	Type 2 Backfill	
HDPE UX geogrid	1.20 - 1.45	1.10 - 1.20	
PP BX geogrid	1.20 - 1.45	1.10 - 1.20	
PVC coated PET geogrid	1.30 - 1.85	1.10 - 1.30	
Acrylic coated PET geogrid	1.30 - 2.05	1.20 - 1.40	
Woven geotextiles (PP&PET)	1.40 - 2.20	1.10 - 1.40	
Nonwoven geotextiles (PP&PE	T) 1.40 - 2.50	1.10 - 1.40	
Slit filmwoven geotextiles (PP)	1.60 - 3.00	1.10 - 2.00	
Type I backfill: Max. particle siz	ce of 102mm & D _g	₅₀ of 30mm	

Type II backfill: Max. particle size of 20mm & D₅₀ of 0.7mm

(FHWA NHI-00-043)

Interface Shear Test

ASTM D5321

Interaction coefficient:

Geotextile/Soil Friction Angles

		Soil Type			
Getextile	Concrete sand (¢=30°)	Ottawa sand (φ=30 ⁰)	Mica schist sand (φ=26 º)		
Nonwoven needle-pun	ched	30 ⁰	26 ⁰	25 ⁰	
Nonwoven heat-bonde	ed	26 ⁰	-	-	
Woven monofilam	ent	26 ⁰	-	-	
Woven slit-	film	24 ⁰	24 ⁰	23 ⁰	
$C_i = -$	Inte	rface strength	tan (24°)	_ ^ 0	
	S	oil strength	= tan (30°)	= 0.0	
			Ma	rtin et al. (1984	

Geosynthetic Applications

Soft Soil Stabilization

Erosion Control

- Erosion Mat or Blanket
- Enhance seed germination and erosion resistance
- UV protected

Village at Westlake - Austin, TX

Stream/River Bank Protection

FHWA NHI-07-092

Geocell for Low-water Crossing

Clarkin et al. (2006)

Geocell for Channel Protection

Geotubes for Erosion Control

Geotube Applications

Marine Mattress for Coastal Revetment

The state of the s

All and a second s

Rubber Dam by Geotube

Canal Liner

Geosynthetic-Reinforced Slope

Mechanically Stabilized Earth (MSE) Wall

Design Considerations

Channel Design Criteria

- Based on peak flow capacity
- Consider site conditions
- Design channel lining to ensure the stability
 - Vegetation
 - ➢ Riprap
 - Geosynthetic liner

Design Methods

- Maximum permissible velocity method
 - Predicted mean velocity < maximum permissible velocity
- Tractive force (shear stress) method
 - Predicted shear stress < maximum allowable shear stress</p>

Channel Material	Permissible Mean
	Channel Velocity (ft/s)
Fine sand	1.5
Silt loam	2.0
Coarse sand	2.0
Fine gravel	2.5
Coarse gravel	3.0
Cobbles and gravel (to 3 in.)	4.0
Earth	
Silty sand	2.0
Silty clay	3.5
Clay	4.0
Cobbles and small rock (to 6 in.)	7.0
Small boulders (to 10 in.)	10.0
Medium boulders (to 25 in.)	15.0
Large boulders (to 50 in.)	20.0
Grass lined earth channel (slopes< 5%)	
(for 5-10%, reduce velocity by 1 ft/s, for	
>10%, reduce velocity by 2 ft/s)	
Bermuda grass	
Sandy silt	6.0
Silt clay	8.0
Kentucky blue grass	
Sandy silt	5.0
Silt clay	7.0
Poor in-place rock—usually	
sedimentary	10.0
Soft sandstone bedrock	8.0
Volcanic ash	3.0
Soft shale	3.5
Good rock (usually igneous or hard	
metamorphic bedrock)	20.0+

Maximum Permissible Mean Channel Velocity

USACE (1991)

Max. Design Velocity and Flow Duration for Erosion Resistance

NOTES:

- 1. Hard Armor includes Concrete, Riprap, Gabions, Concrete Blocks, etc.
- Soft Armor includes Turf Reinforcement Mats (TRM), Erosion Control Revegetation Mats (ECRM), Vegetated Geocells, and many Biotechnical Treatments.
- 3. Available data shows considerable variability in the Allowable Velocity Limits.

Hewlett et al. (1987) Theisen (1992), Clarkin et al. (2006)

Required Size of Riprap Stone

EQUIVALENT SPHERICAL DIAMETER OF MEDIAN SIZE (Dst) STONE, IN FEET

Predicted and Maximum Allowable Shear Stresses

Shear Stress $\tau = \gamma_w \cdot \mathbf{d} \cdot \mathbf{S}$

 γ_w = unit weight of water, d = depth of flow s = channel slope

General Guide for Maximum Allowable Shear Stress (psf)

Vegetation (unreinforced)	3
Erosion control blanket	3
Rip-rap (18" stone)	6
Rip-rap (24" stone)	8
Typical turf reinforcement mat	8
Articulating concrete block	15
Fabric-formed concrete	20

Bio-stabilization

Example:

 $c_a = 50 \text{ psf}, H = 2 \text{ ft}, \gamma = 120 \text{ pcf}, \phi = 30^{\circ}$

 $\alpha = 40^{\circ}$ (1:1 slope, no-seepage condition)

 $\alpha = 27^{\circ}$ (2:1 slope, seepage condition)

Toe Protection or Support Active wedge W_A W_P **Passive wedge** α

Anchorage Requirements in Erosion Control Applications

ARMY TM 5-818-8 (1995)

Pin Spacing Requirements in Erosion Control Applications

Slope	Pin Spacing (ft)
Steeper than 3(H) : 1(V)	2
3(H) : 1(V) to 4(H) : 1(V)	3
Flatter than 4(H) : 1(V)	5

Steel securing pins: 8/16 in. (diameter), 18 in. (long), fitted with a 1.5-inch metal washer

Longer pins are advisable for use in loose soils

ARMY TM 5-818-8 (1995)

Why is Anchorage Needed Sometimes ?

FoS =	tan δ	$C_i \tan \phi$	
	$tan \alpha$	$tan\alpha$	

Typical $C_i = 0.6$ to 0.8

Typical Geosynthetic Layout for Reinforced Slope

Face Options for Reinforced Slopes

Slope Face	Type of Facing			
Soil Type	Face not wrapped w	rith geosynthetic	Face wrapped with geosynthetic	
Son Type	Vegetated Face	Hard Facing	Vegetated Face Hard Fac	
>50°	Not Recommended	Gabions	Sod Wire bask	
All Soil			Permanent Stone	
Types			Erosion Shotcrete	
			Blanket w/ seed	
35° to 50°	Not Recommended	Gabions	Sod	Wire baskets
Clean Sands		Soil-Cement	Permanent Stone	
Rounded			Erosion Shotcrete	
Gravel			Blanket w/ seed	
35° to 50°	Bioreinforcement	Gabions	Sod	Wire baskets
Silts		Soil-Cement	Permanent	Stone
Sandy Silts		Stone veneer	Erosion Shotcrete	
_			Blanket w/ seed	
35° to 50°	Temporary or	Hard Facing	Geosynthetic	Geosynthetic
Silty Sands	Permanent Erosion	not needed	wrap not wrap not	
Clayey Sands	Blanket w/ seed or		needed needed	
	sod			
25° to 35°	Temporary or	Hard Facing	Geosynthetic	Geosynthetic
All Soil	Permanent Erosion	not needed	wrap not	wrap not
Types	Blanket w/ seed or		needed	needed
_	sod			

Collin (1996)

Slope Stability Analysis

From ReSSA Software

Courtesy of Leshchinsky

MSE Wall vs. Reinforced Slope

Increase Space

- Slope: Face inclination < 70°
- Solution driven by many factors
 - Space
 - Cost
 - > Vegetation
 - Backfill

(d) Global failure

(e) Pullout

(f) Rupture

Backfill Requirements for MSE Wall

<u>Sieve size</u>	<u>% passing</u>		
4 in.	100 – 75		
No. 4	100 – 20		
No. 40	0 - 60		
No. 200	0 - 35		

Plasticity Index (PI) of fine fraction < 20

National Concrete Masonry Association

MSE Wall Drainage Design

Design Procedure for Geotextile Filter beneath Hard Armor

- Step 1: Evaluate critical nature of site conditions
- Step 2: Obtain soil samples from site and test
- Step 3: Evaluate armor material and placement
- Step 4: Determine anticipated reversing flow through system
- Step 5: Determine geotextile requirements
 - > A. Retention (i.e., AOS)
 - > B. Permeability/permittivity ($k_{geotextile} > k_{soil}$ or 10 k_{soil})
 - > C. Clogging (i.e., O_{95} , porosity, POA)
 - D. Survivability (i.e., geotextile class)
- Step 6: Estimate costs
- Step 7: Prepare specification
- Step 8: Obtain samples of geotextile before acceptance
- Step 9: Monitor installation and performance

FHWA Filter Design Procedure

Classifications of Geotextiles in AASHTO M288-96 Specifications

Class 1:

For severe or harsh survivability conditions where there is a greater potential for geotextile damage

Class 2:

For typical survivability conditions; this is the default classification to be used in the absence of site specific information

Class 3: For mild survivability conditions

Geotextile Strength Property Requirements for Permanent Erosion Control

		Geotextile Class			
		Class 1		Clas	ss 2
		Elongation (%)			
	Units	< 50	<u>></u> 50	<50	<u>></u> 50
Grab strength	lb	315	200	250	157
Sewn seam strength	lb	280	180	220	140
Tear strength	lb	110	80	90	56
Puncture strength	lb	620	433	495	309
Ultraviolet stability	50% retai	50% retained strength after 500 hours of exposure			

AASHTO (2006)

Design of Geotube

Pressure head/circumference (dimensionless)

Input:

Pressure head, b₁ Circumference, S

Output:

Tube heights, H, H' Tube width, B, B' Geotextile strength, T

Next Presentation: Case Studies

- Simple Slope with Temporary Toe Protection
- Reinforced Vegetation with Temp. Toe Protection
- Reinforced Slope with Permanent Toe Protection
- Hard Armor Structures
- Retaining Structures

Questions?